Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3, and Sb2Te3 materials

نویسندگان

  • K. M. F. Shahil
  • M. Z. Hossain
  • V. Goyal
  • A. A. Balandin
چکیده

Bismuth telluride (Bi2Te3) and related compounds have recently attracted strong interest, owing to the discovery of the topological insulator properties in many members of this family of materials. The few-quintuple films of these materials are particularly interesting from the physics point of view. We report results of the micro-Raman spectroscopy study of the “graphene-like” exfoliated few-quintuple layers of Bi2Te3, Bi2Se3, and Sb2Te3. It is found that crystal symmetry breaking in few-quintuple films results in appearance of A1u-symmetry Raman peaks, which are not active in the bulk crystals. The scattering spectra measured under the 633-nm wavelength excitation reveals a number of resonant features, which could be used for analysis of the electronic and phonon processes in these materials. In order to elucidate the influence of substrates on the few-quintuple-thick topological insulators, we examined the Raman spectra of these films placed on mica, sapphire, and hafnium-oxide substrates. The obtained results help to understand the physical mechanisms of Raman scattering in the few-quintuple-thick films and can be used for nanometrology of topological insulator films on various substrates. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3690913]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets.

We report on Raman spectroscopy of few quintuple layer topological insulator bismuth selenide (Bi2Se3) nanoplatelets (NPs), synthesized by a polyol method. The as-grown NPs exhibit excellent crystalline quality, hexagonal or truncated trigonal morphology, and uniformly flat surfaces down to a few quintuple layers. Both Stokes and anti-Stokes Raman spectroscopy for the first time resolve all fou...

متن کامل

Structural phase transitions in Bi2Se3 under high pressure

Raman spectroscopy and angle dispersive X-ray diffraction (XRD) experiments of bismuth selenide (Bi2Se3) have been carried out to pressures of 35.6 and 81.2 GPa, respectively, to explore its pressure-induced phase transformation. The experiments indicate that a progressive structural evolution occurs from an ambient rhombohedra phase (Space group (SG): R-3m) to monoclinic phase (SG: C2/m) and e...

متن کامل

Observation of insulating and metallic-type behavior in Bi2Se3 transistor at room temperature

Recently, topological insulators (Bi2Se3, Bi2Te3 and Sb2Te3) have attracted much attention because of their bulk band gap (0.3 eV) and spin-polarized surface states with conductive massless Dirac Fermions [1]. Interestingly, Bi2Se3 has rhombohedral crystal structure which consists of Se or Bi lattices in stacked manner with the sequence of Se-Bi-Se-Bi-Se. This forms a sheet-like structure in wh...

متن کامل

The Department of Electrical Engineering

Materials with Dirac-type electronic band structure have recently drawn much interest. These materials revealed unique electrical, thermal and optical properties, which can be potentially used in future highspeed electronics. In this dissertation research, I investigate on two different classes of Dirac materials: graphene and topological insulators of the bismuth telluride (Bi2Te3) family. The...

متن کامل

Demonstration of surface transport in a hybrid Bi2Se3/Bi2Te3 heterostructure

In spite of much work on topological insulators (TIs), systematic experiments for TI/TI heterostructures remain absent. We grow a high quality heterostructure containing single quintuple layer (QL) of Bi2Se3 on 19 QLs of Bi2Te3 and compare its transport properties with 20 QLs Bi2Se3 and 20 QLs Bi2Te3. All three films are grown on insulating sapphire (0001) substrates by molecular beam epitaxy (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012